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SUMMARY 
Unstructured tetrahedral grids are generated using a new, very efficient procedure based upon the Delaunay 
triangulation. The generation procedure is extremely fast, having the capability to generate large grids in 
minutes on workstations. To maximize this computational performance, a new form of adaptivity has been 
developed involving the use of sources placed within regions of the domain which require further grid 
point resolution. A source has a position and a specified grid point density. An error indicator is used to 
find the elements within the grid which require refinement. Within such elements sources are placed with 
specified grid point densities which are proportional to the amount of refinement required. The grid 
generation procedure is then invoked and a grid generated whose grid point density is controlled by the 
sources. The resulting grid is thus refined in the regions identified by the error indicator as requiring greater 
resolution. The paper discusses the generation process and emphasizes the new solution adaptation 
capability. Several examples of the approach are given, including aerospace compressible flow simulations 
over realistic configurations. 
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I .  INTRODUCTION 

Two major advantages of unstructured grids over structured grids are their applicability to 
complex geometries and the ease with which grid adaptation can be in~orporated. ' -~ A new 
alg~rithrn' .~ has been developed which, it is believed, has taken a major step towards reducing 
the grid generation time for realistic configurations, to the order of minutes on workstations of 
modest capabilities, and thus further strengthening the applicability of the unstructured grid 
approach. The performance achieved with this new method can be enhanced by the use of grid 
adaptation, the computational times for which have also been substantially reduced. This paper 
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will outline the new approach for grid generation and will give details of the approach taken 
to grid adaptation. Examples of the method will be given for the simulation of inviscid 
compressible flow over two- and three-dimensional aerospace geometries. 

2. TETRAHEDRAL GRID GENERATION 

The unstructured tetrahedral grid generation is based upon the Delaunay triang~lation. '*~- '~ 
Details of the implementation of the new efficient approach have been given el~ewhere.'.~ Only 
the main features which are relevant to the adaptation procedure will be presented here. 

2.1. Point connectivity 

The Delaunay triangulation I is the criterion used to connect points to form tetrahedra. This 
geometrical construction is dual to the Voronoi diagram." Each point is assigned to a territory 
which is closer to that point than to any other point. Such regions for each point are called 
Voronoi neighbourhoods, and if points with common boundaries of Voronoi neighbourhoods 
are connected, then the Delaunay triangulation is obtained. Each tetrahedron has associated 
with it a vertex of the Voronoi diagram, which is located at the circumcentre of the sphere 
through the four points which form the tetrahedron. No other point can lie within this sphere 
and as such this property is called the in-circle criterion. The algorithm used to generate this 
construction is based upon a modified Bowyer a p p r 0 a ~ h . l ~  

2.2. Point creation 

The Delaunay algorithm gives no indication as to how points should be generated. Hence a 
procedure must be constructed to perform this task. The point generation for arbitrary 
three-dimensional domains is achieved using the following algorithm. 

Algorithm I 

point o 
1. Compute the point distribution function for each boundary point ro = (x, y ,  z), i.e. for 

where I I is the Euclidean distance and it is assumed that point o is surrounded by M 
points, i = 1,. . . , M. 

2. Generate the Delaunay triangulation of the boundary points. 
3. Initialize the number of interior field points created, N = 0. 
4. For all tetrahedra within the domain: 

(a) Define a prospective point Q to be the centroid of the tetrahedron. 
(b) Derive the point distribution dp, for the point Q by interpolating the point distribution 

function from the nodes of the tetrahedron, dp,, m = 1, .  . . ,4. 
(c) Compute the distances d,, m = 1 , .  . . ,4,  from the prospective point Q to each of the 

four points of the tetrahedron. If { d ,  < adp,) for any m = 1,.  . . ,4, then reject the point; 
return to the beginning of step 4. Otherwise compute the distance s j ,  j = 1,. . . , N, from 
the prospective point Q to other points to be inserted, namely Pj, j = 1,.  . . , N .  I f  
{ s j  < fl dp,} for any j = 1,.  . . , N, then reject the point; return to the beginning of step 
4. Otherwise accept the point Q for insertion by the Delaunay triangulation algorithm 
and include Q in the list Pj, j = 1, .  . . , N. 
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5. 
6. 

7. 

(d) Assign the interpolated value of the point distribution function dp, to the new node P,. 
(e) Next tetrahedra. 
If N = 0, go to step 7. 
Perform the Delaunay triangulation of the derived points Pj, j = I ,  . . . , N. Return to 
step 3. 
Smooth the mesh. 

To clarify this procedure, Figure 1 shows several steps of the above algorithm applied in two 
dimensions. Figure I(a) shows a rectangular domain discretized by a set of points. The grid 
generated within the domain should reflect the initial boundary point spacing. Hence it is 
necessary to derive some characteristic lengths associated with the boundary points. In the initial 
phase the only length scales present are the lengths associated with each edge. Hence, to derive 
length scales at nodes, these edge lengths are transferred to nodes using the equation given in 
step 1. The boundary nodes are then connected together using the Delaunay triangulation. The 
resulting triangulation within the domain is shown in Figure I(b). Given this triangulation, it is 
necessary to determine whether the shape of each triangle satisfies the length scale associated 

(a) Typical length scale at 0 is dp,  = )([I + 12)  
i .l 
1 

n 

Figure I .  Explanation of the automatic point creation 
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with each of the nodes. This assessment is performed by determining whether the edge lengths 
of the formed triangles are consistent with the characteristic length scale of each of the nodes. 
This consistency check for a triangle is performed by creating a point at the centroid position 
and interpolating from the three vertices of the triangle the characteristic length associated with 
that position within the grid; see Figure l(c). The length of each edge formed by connecting the 
centroid node to the three vertices is then computed. If any of these edge lengths is less than 
the interpolated characteristic length, then the point at the centroid is rejected. Figure l(d) shows 
two cases for different triangle shapes. This strategy is implemented to ensure refinement of the 
triangles until the lengths of edges of triangles are consistent with the length scales within the 
mesh, as interpolated from the initial boundary nodes. The checks so far performed are very 
easy and computationally efficient to implement. However, the test as to whether a point is 
accepted is performed with respect to the edges which are assumed to be created between the 
centroid point and the vertices of the triangle. In practice, if the point is accepted, the Delaunay 
triangulation will be used to connect the point within the existing triangulation. If points are 
placed close to each other, then there will be many connections between inserted centroid points 
and the assumptions made about consistency of interpolated characteristic lengths and the 
lengths of edges will not be valid. Hence, once a centroid point has been created, an exclusion 
zone is imposed such that no other centroid point can be created within this region (Figure l(e)) 
on the same cycle within Algorithm 1. The exclusion zone is proportional to the interpolated 
length scale at the centroid. After testing each triangle, the centroid points created are then 
inserted via the Delaunay triangulation. This process is repeated until no centroid points are 
created. The point insertion procedure has then converged, resulting in the final grid. A realistic 
application of the above approach is shown in Figure 2. 

The coefficient a controls the grid point density by changing the allowable shape of formed 
tetrahedra, whilst /? has an influence on the regularity of the triangulation by not allowing points 
within a specified distance of each other to be inserted in the same sweep of the tetrahedra 
within the field. It should be noted that this algorithm for point generation can be used for grid 
adaptation on surfaces, as will be described later. 

It is clear from the description given that the grid point density distribution is controlled by 
step qb). Three different possibilities can be implemented within the algorithm. The one described 

Figure 2. Example of the point creation procedure applied to a realistic geometry 
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in Algorithm 1 uses the boundary point distribution, details of which are given in Section 2.2.1. 
Two alternative methods are described in Sections 2.2.2 and 2.2.3. 

2.2.1. Point distribution interpolated from the boundary nodes. The procedure outlined creates 
a distribution of points within the domain which is governed by the point distribution on the 
boundaries. This procedure can be thought of as equivalent to a boundary value problem and 
acts like the popular grid generation procedure for structured grids.14 

In general, linear interpolation of the boundary point spacing is used, but when boundaries 
are close together and the spacing varies rapidly, it is effective to use a boundary weighting 
function of the form 

dPboundnry = dp - 4 d p  - dpa), 

where nl ,  n2, n3 and n4 are the nodes of a tetrahedron with at least one node a boundary node 
and o is a weighting parameter, typically 03. 

To construct grids on surfaces, the generation is performed in the parametric co-ordinates of 
the surface. Figure 3 shows an application of this approach to the generation of a grid on the 
surface of a nacelle and pylon. The algorithm, working in the parametric surface co-ordinates, 
produces a grid of triangles whose sizes are governed by the boundary point spacing. It is clear 
that the procedure produces very regular grid points and triangles. 

2.2.2. Point creation by the use of sources. In somewhat of an analogous way to point sources 
used as control functions with elliptic partial differential  equation^,'^ it is possible to define line 
and point sources to provide grid control for unstructured meshes. The local point spacing at 
position r can be defined as any appropriate function dp(r) = f ( x ,  y, z). One convenient and 
flexible functional form is 

Figure 3. Grid on the surface of a nacelle generated using the Delaunay triangulation and the automatic point creation 
algorithm 
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where Aj  and B j  are the user-specified amplification and decay parameters respectively of the 
source j, j = 1,. . . , M, and R j  is the position of each point source. Aj  can be interpreted as the 
required spacing at R j ,  while Bj  can be derived such that the spacing A j  decays at a specified 
rate away from R j .  Grid point creation is then performed as outlined in Algorithm 1, but in 
step 4(b) the appropriate point distribution function at the centroid of a tetrahedron is 
determined by equation (1). 

This technique provides a mechanism for clustering points, but it can prove difficult to choose 
appropriate amplification and decay parameters so as to ensure adequate point clustering away 
from the sources. Hence a simple modification is to define the point spacing as 

In this case dpboundary is the point distribution derived from the boundary spacing. 
This approach can be readily extended to include line sources and planar sources. In general, 

the implementation of the point clustering due to sources, as described here, requires a search 
over the number of sources to determine the appropriate value of the point distribution function. 
For a small number of sources this is not a significant workload. However, an alternative 
technique, which is more computationally efficient for large numbers of sources, is to firstly 
generate a grid from the boundary point distribution ignoring any sources in the field. Then the 
tetrahedral elements are found which contain each of the sources. The amplification factor of 
each source is used to modify the point-spacing function at the nodes of the tetrahedral element. 
For example, if the amplification factor was set to 0.5, this could be interpreted to imply that 
the point spacings at  the nodes of the elements which contain the sources are decreased by this 
factor. If all nodes of elements which contain the sources are appropriately modified, then on 
returning to the point insertion algorithm, some elements will no longer satisfy the spacing 
parameter and additional points must be added. The rate of decay of the influence of the point 
sources can be incorporated by moving out from the element which contains a source and 
appropriately modifying the nodes of the neighbour elements. This then provides the desired 
point clustering. Examples, which for clarity are presented for two-dimensional domains, of the 
use of the source approach are shown in Figure 4. 

2.2.3. Point creation by the use of a background mesh. This option is included for completeness, 
since it is clear that the point creation algorithm readily admits this procedure. The method is 
now well known and is widely ~ s e d . ~ - ~  It requires, in the first instance, the user to specify a 
mesh which covers the domain to be gridded. At each of the mesh points the grid point density 
is defined through interpolation from the background mesh and this information can then be 
passed via step 4(b) of Algorithm 1 through to the point creation algorithm. 

2.3. Boundary integrity 

Following the automatic point creation and connections by the Delaunay algorithm, the 
resulting triangulation is made boundary-conforming by a method which utilizes transformations 
on tetrahedra.’a6 Edges of missing boundary faces are recovered by finding the tetrahedra which 
are intersected by the missing edge and then creating or modifying these tetrahedra to recover 
the missing edge. A similar approach is used to recover boundary faces. 
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Line md h i m  Source Increrped source intensity (sune d e u y  as (a)) 

Reduced decay rate from (a) and (b) Incmsed sow intcnsity 
and funher reduced d a y  

Figure 4. Effect of amplification and decay parameters of sources 

2.4. Eflciency 

Table I lists some computational times, as measured on a variety of computers, for the 
generation of lo6 tetrahedra. The results demonstrate that realistic grids for engineering 
computations can be readily obtained on workstations. 

Table I. Computational times for the generation 
of a grid with lo6 elements. Times include I/O. 
consistency checks and post processing for the 

flow solvers 

Computer CPU time (min) 
~ ~ 

CRAY Y M P 4.96 
IBM Risc 6OOO 550 12.28 
SGI PI 28.84 
SGI Indigo Elan 25-28 
SGI Indigo XS 24/4000 14.75 
SGI Crimson 14.36 
SUN Sparc I I  26.98 
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3. GRID ADAPTATION 

The fundamental idea behind adaptation is to modify the grid or solution algorithm to better 
resolve the features in the flow field. Here only techniques which modify the grid will be 
considered. 

Grid adaptation techniques fall into the categories of (i) h-refinement whereby points are added 
or deleted, (ii) r-refinement where the number of nodes remains fixed but the nodes are relocated 
to better resolve the important features and (iii) remeshing methods where, given information 
on a grid, a completely new grid is derived from that information. All techniques are driven by 
an error or solution criterion. 

Here we propose a new method which uses the automatic point creation outlined in Algorithm 
1 and the ideas outlined for point clustering using sources. The new approach is a combination 
of h-refinement and remeshing and recovers both these procedures for given input parameters. 
The technique is equally applicable for steady and transient adaptation. The main steps are as 
follows. 

Algorithm 2 

1. Generate the initial mesh. 
2. Obtain a flow solution. 
3. Derive sources (a) on the surface and (b) in the field. 
4. Generate the adapted surface grid. 
5. Generate the adapted field grid. 
6. Return to step 2. 

Once a flow solution has been obtained, the sources are derived by detecting regions in the 
domain where solution or error activity is high. 

3.1. Error indication and source creation 

For the present solution-adaptive grid generation procedure an error indicator is required 
that detects and locates appropriate features in the flow field. Since the grid is usually de-refined 
to the original grid, the indicator should determine where all the appropriate features are located. 
In order to provide flexibility in isolating varying features, multiple error indicators are used. 
Each can isolate a particular type of feature. The error indicators are set to the negative and 
positive components of the gradient in the direction of the velocity vector, as given by 

e ,  = -min[V.V(4),0], e2 = max[V.V(+),O], 

and the magnitude of all the gradients in all directions normal to the velocity vector, as given by 

where V is the velocity vector and 4 is any suitable flow property. Typically density is used as 
the basis for the error indicator. The first two error indicators represent expansions and 
compressions in the flow direction and the third represents gradients normal to the flow direction. 
The indicators can be scaled by the relative element size. Length scaling can improve the 
detection of weak features on a coarse grid with the present procedure. Each error indicator is 
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treated independently, allowing particular features in the flow field to be isolated. For each error 
indicator an error is determined from 

e l im = em + climesr 

where elim is the error limit, em is the mean of the error indicator, e, is the standard deviation 
of the error indicator and clim is a constant. Typically a value near unity is used for the constant. 

The error indicators are converted into grid generation sources which, as indicated, locally 
reduce the relative element size during grid generation. The grid generation sources are created 
at grid points where an error indicator is greater than the corresponding error limit E,,,.  The 
strength of the source is proportional to the normalized magnitude of the error indicator and 
is scaled within a maximum and minimum strength, dp,,, and dp,,, respectively. Hence for any 
element with el,, > Etol the source strength is determined from 

where Emax and Emin are the maximum and minimum computed error values respectively 
throughout the field and dp,,, and dp,,, are the maximum and minimum normalized point- 
spacing parameters. When the maximum error occurs, the minimum spacing is required. 
For example, a value of dp,,, = 0.5 will result in an enriched mesh at the position of a source 
which has a point spacing half that of the initial mesh. In regions where the error indicator lies 
in the range Eli, < Eta,, no sources are created and the mesh is unaltered. 

3.2. Surface adaptation 

Grid adaptation on the configuration surface is perfomed as follows. 

Algorithm 3 

1. Input the previous surface mesh. 
2. Input the surface sources. 

(i) Determine the surface triangles which contain the sources. 
(ii) Insert a point at the position of each source and connect to form triangles using a 

(iii) Modify the values of the point distribution function at the nodes which form the 

3. Perform the automatic point creation routine to generate additional points, connecting the 

local Delaunay algorithm. 

elements which contain the sources. 

points with a local Delaunay algorithm. 

The mechanics of the surface grid adaptation are as outlined in Algorithm 1, except that the 
point connection is performed by a direct connection between the new point and the three points 
which form the triangle which contains it, followed by several implementations of a ‘local 
Delaunay in-circle criterion’ diagonal-swapping routine. This latter approach is used since a 
two-dimensional Delaunay algorithm is not applicable on a three-dimensional surface. 

In the surface adaptation procedure it is necessary to ensure that the added points are placed 
on the geometrical surface of the configuration. The method adopted here is to reconstruct the 
surface geometry using a transfinite, visually continuous, triangular interpolant.” I t  is viewed 
that this approach is more efficient and applicable than returning to the geometrical definition 
of the surface and will be of major benefit when adaptation is applied to transient, moving 
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Figure 5. Schematic of the surface triangle 

boundary problems. The interpolant utilizes outward surface normals, unlike such methods as 
the Ferguson patch which uses partial derivatives on boundaries. The resulting reconstructed 
surface is a GI representation in that the surface has a continuously varying outward normal 
vector. 

Consider a surface segment which is a vector-valued function represented by 

with ( h , ,  b,, b,) E T, where the domain T is defined as 

T = {(bi, bz ,  b,): 0 5 bi I 1, i = 1, 2, 3; h ,  + b, + b,  = I} (4) 

and the vertices of T are denoted by 

v, = (190, O), v 2  = (0, 1 ,  O h  v, = (0, 0, 1). ( 5 )  

Figure 5 shows such a triangle in schematic form. The edges are defined by 

el = ((0, b2, b3) E T } ,  e ,  = { ( b , ,  0, b3) E T } ,  e3 = { ( b i , b , , O ) E  T } ,  (6) 

as shown in Figure 6. It is convenient to introduce the set of indices 

The univariate cubic Hermite operator along edges (Figure 7) produces a cubic interpolant 

(7) 

from end points V, and V, and tangent vectors V b  and V’, and can be written as 

“0, V, ,  v o ,  V;l(r) = hO(OV0 + h , ( W  + HO(W0 + H , ( t ) V ; ,  

v3 

V I  e 3  v2 

Figure 6. Edge vertex notation 
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Figure 7. Schematic of the edge of a triangular patch 

where the blending functions are 

ho(t)  = 1 - 3t2 + 2t3, hl(t)  = 3 t 2  - 2t3, 

Ho( t )  = t - 2t2 + c3,  H l ( t )  = t 3  - t2 ,  

0 < r < 1, and a prime denotes differentiation with respect to the parametric variable r .  
For the present applications we need an operator of the form 

with the properties 

where ( ) denotes a scalar product. 
However, Vb and V‘, are tangent vectors which are not uniquely determined by the 

requirements of (10) and are unknown in our procedure. We require that g’(0) be in the plane 
containing N o  and Vl - Vo and that y‘(1) be in the plane of N ,  and Vl - Vo. Hence it is necessary 
to compute end tangents from the normal vectors in the following way: 

g’(0) = 4 ( V I  - Vo) - ( N o ,  Vl - VO)N,l = aNo x (Vl - V,) x N o ,  

g’(1) = b[(V, - V,) - (N,, v, - Vo)N,] = b N ,  x (V,  - V,) x N,. (11) 

Given these conditions, we can define the Hermite interpolant 

where a and fl are arbitrary non-zero constants which can be used much like tension parameters 
to affect the shape of g(t). For all cases considered these have been taken to be unity. 

Given these data, the transfinite interpolant can be defined. It is based upon the ideas of the 
side vertex method for the interpolant defined by g. The arguments of g are a vertex and a point 
on the opposite facing edge where a ray emanating from the vertex and passing through the point 
( b , ,  b2 ,  6 , )  intersects. These boundary points can be expressed as 
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where N [ F ] ( < )  is the outward surface normal vector at the vertex V, ,  which leads to 

GCFI = wIGlCF1 + WZG2CFl + W3G,CF3 

with 

Nielsonls proves that (14)-( 16) satisfy the interpolation conditions 

G(F) (dT)  = F ( d T ) ,  “G(F)l(dT) = “FI(d73 

where dT refers to the boundaries of the triangle t. The interpolation defined by (15) represents 
a transfinite continuous patch. In the case of triangular interpolants for function data a common 
approach to discretization is to take the function values along an edge as cubic Hermite 
interpolants and the cross-boundary normal derivatives as linear interpolants. In this way the 
boundary data and consequently the entire triangular approximation depends only upon the 
nine values at the vertices, namely the value of the function and its two first-order partial 
derivatives at each of the vertices of the triangular domain. In a similar manner we now wish 
to obtain a six-parameter, G’ interpolant. This will depend solely upon the position and outward 
surface normal at the three vertices of 7: 

Given the transfinite formulation, the discretized form for each of the three radial projectors 
is given by 

Hence the interpolant involves three vertex-to-side interpolations. This approach ensures that 
the added points are consistent with a G1 representation of the configuration surface. 

The accuracy of the technique has been examined for an unstructured surface grid representing 
part of the surface of a sphere with unit radius. The initial surface triangulation is shown in 
Figure 8(a) and consists of just 21 grid points connected by 28 triangles. The surface has been 
reflected along one side to enhance the definition of the surface shape on the ‘far’ horizon of 
the part sphere. 

The adaptation of the surface was performed by specifying that the required point spacing 
for each grid point not on the boundary or reflection plane be reduced by a factor of 30. Adapting 
the surface by placing points at a position derived as the averaged co-ordinates of the nodes of 
a triangle into which the point is inserted is the crudest form of surface definition and is used 
as the benchmark. The surface grid generated in this way is shown in Figure 8(b) and the average 
error of the additional 7199 points is 254%, with a maximum error of 4.64%. This compares 
with an average error for the points placed using the triangular interpolant, or so-called GI 
patch, of 0494%, with a maximum value of 1.09%. The surface generated using the G’ patch 
is shown in Figure 8(c). An analysis of the errors obtained for each sweep of point addition 
during the Delaunay triangulation procedure is presented in Figures 9(a) and 9(b), which show 
the average and maximum displacement errors for the number of points inserted on each sweep 
of the Delaunay triangulation procedure respectively. 

It is apparent that the use of the G’ patch to calculate the position of points being inserted 
reduces the displacement error by a factor in excess of four for both the average and maximum 
displacement values. A study of Figure 8 clearly shows the benefit of using the G’ patch when 
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Figure 8. Surface reconstruction: (a )  initial surface triangulation; (b) surface triangulation using linear interpolation for 
point position: (c) surface triangulation using G' interpolation for point position 
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Figure 9. Error plots for the surface reconstruction: (a) average displacement error for each sweep of point addition; 
(b) maximum displacement error for each sweep of point addition 

adapting a surface grid, since the circular shape of the far horizon of the sphere has been greatly 
improved and the peaks apparent in the surface derived from linear interpolation of the 
co-ordinates do not appear in the surface generated using the G' patch. 

3.3. Field adaptation 

Grid adaptation in the field is performed as follows. 

Algorithm 4 

1. Generate a mesh from the non-adapted surface mesh (if appropriate, a different con- 
centration factor z can be used) or input the previous mesh. 
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2. Input the additional surface points which are included in the adapted surface grid and 

3. Input the field sources. 
connect with the Delaunay algorithm. 

(i) Determine the elements which contain the sources. 
(ii) Insert a point at the position of the source and connect with the Delaunay algorithm. 

(iii) Modify the values of the point distribution function at the nodes in the element. 
4. Perform the automatic point creation to generate the adapted field mesh. A different 

concentration factor from that used to generate the initial grid can be used in this step of 
the Delaunay grid generation. To distinguish this, the concentration factor in this step will 
be denoted by a,. 

Steps 1 and 2 are straightforward to apply. Step 3 requires a searching process to find the 
elements which contain the sources. This type of search is similar to the one used in the Delaunay 
algorithm to find all spheres which contain a point. Hence in the implementation of step 3(i) 
the Delaunay algorithm search routine is used with the addition of a routine to determine the 
element rather than the sphere which contains the source. The important issue in the search is 
that the tree data structure, which is essential for an efficient implementation of the Delaunay 
algorithm, is used. 

If the parameter rr is small, typically in the range 04-1.4, then points will in general be added 
by the automatic point creation procedure until the point distribution satisfies that which was 
specified with the sources. If, however, a, is large, say of the order of lo3, then after the insertion 
of a point corresponding to the position of the source the automatic point creation procedure 
will not add points. In this way, with the appropriate values of a,, the proposed adaptation 
procedure degenerates to standard h-refinement. This was also the case for the surface grid as 
considered in Section 3.2. It is clear, therefore, that the method proposed generalizes h-refinement 
so that an arbitrary number of points can be added. Furthermore, since in the adaptive cycle a 
can be modified from its initial grid value in step I of Algorithm 4, it is possible to regenerate 
a mesh prior to the inclusion of sources, so that once features in the flow field have been detected 
and sources defined, the initial mesh can be coarsened. Hence, the proposed method has a 
remeshing capability to ensure that with successive adaptation the number of grid points does 
not always increase. As with remeshing, the proposed procedure can result in a final adapted 
mesh having fewer points than the initial mesh. 

4. FLOW ALGORITHM 

4.1.  Governing equations 

The Euler equations for the time-dependent, three-dimensional, compressible, inviscid, non- 
heat-conducting flow of a simple system in thermodynamic equilibrium in the absence of body 
forces can be expressed in conservation form as 

au d ~ i  
-+ - -0 ,  i =  1 , 2 , 3 ,  
d t  dx' 
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where U is the solution vector and F' is the advection flux vector in the i-direction. The solution 
and advective flux vectors are given respectively by 

U =  

where p is the density, V' is the velocity component in the i-direction, E is the total energy and 
p is the static pressure. 

For the present investigation a thermally and calorically perfect gas is assumed and the 
equation of state for pressure is given by 

(20) = ( y  - I ) [ ~ E  - fp(v*' + vZ2 + v3j3, 
where y is the specific heat ratio, which is taken for this work to be 1.4. 

4.2. Numerical solution procedure 

The governing equations (1 8) are solved using an explicit multistage Runge-Kutta scheme."' 
The governing equations are discretized in space using a Galerkin weighted residual approxima- 
tion with the solution domain subdivided into tetrahedral finite elements. Time discretization 
is achieved using an explicit multistage Runge-Kutta procedure. A full description of the method 
of characteristics used to implement the boundary conditions for the Euler solver is given in 
detail elsewhere.'' 

5 .  RESULTS 

5.1. NACA 0012 test case 

Since the method proposed contains some new aspects, it is important to investigate how well 
the procedure performs when compared with more established techniques. Hence the first 
example is that for the inviscid flow over an NACA 0012 aerofoil at a freestream Mach number 
of 0.75 and an angle of incidence of 2" computed using a fine structured grid, adapted structured 
and adapted unstructured grids with standard point enrichment and the new proposed method 
utilizing the source approach. The relevant grids and flow field contours are shown in Figures 
10(a)-lO(d). The number of points used in each computation and the computed lift are given in 
Table 11. 

The flow field contours clearly demonstrate the benefits of grid adaptation, even over a fine 
grid, in resolving the shock wave. The conventionally refined grids required four levels of 
adaptation, but the grid using the sources was achieved using only two applications of the 
sources. The number of points used in the adaptation with sources is less than those used by the 
other techniques, yet the results compare well. 

5.2. Engine inlet 

The second example to be presented is a three-dimensional Mach 3 inviscid flow within an 
engine inlet. Figure l l (a )  shows a schematic of the geometry. The surface grid was generated 
using a two-dimensional Delaunay triangulation algorithm which has been applied to each of 
the planar faces of the inlet. Figures 1 l(b) and 1 l(c) show two views of the inlet. In each case 
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Figure 10. Grids (left) and flow contours (right) for a NACA 0012 aerofoil: (a) fine structured grid; (b) structured grid 
with h-refinement; (c) unstructured grid with h-refinement; (d) unstructured grid with refinement by sources 
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Table I I .  Details or the grids and computed lift coefficient for an NACA 0012 
aerofoil at freestream Mach number of 075  and angle of incidence of 2" 

~ 

Grid Points Lift coefficient 

Fine structured 16640 
Adapted structured 8274 
Adapted unstructured 5206 
Adapted unstructured (sources) 3676 

0.4269 
0.4334 
0.4296 
0.4298 

the initial, first adapted and second adapted surface grids and contours of pressure are presented. 
The number of points used in each grid is given in Table 111. 

It is clear from the flow field contours that the adaptation enhances the resolution of the 
shock waves. 

5.3. Wing/juselaye/pylon/nacelle configuration 

The third example is the application of the proposed method to the transonic flow over a 
wing/fuselage/pylon/nacelle configuration. Two non-adapted solutions have been obtained. The 
first is for a mesh containing 592,380 tetrahedra, a solution which can be used to gauge the 
accuracy of the other results. The second is for a mesh containing 337,696 tetrahedra and thus 
allowed sufficient scope for adaptation to be applied and its benefits to be assessed. Two 
adaptations were performed on the smaller initial mesh, resulting in a final second adapted mesh 
containing a similar number of points/tetrahedra as the first larger non-adapted mesh. Two 
views of the surface meshes and contours of pressure are shown for the initial mesh of 337,696 
tetrahedra and the second adapted mesh in Figure 12(a). The increased resolution of the shock 

InllowlOutllow 
Boundary I-l .. . ... . . 

PI." v*rr 

Figure 11. Supersonic engine inlet simulation: (a) engine intake geometry; (b, c)  initial, first adapted and second adapted 
surface meshes and contours of pressure 
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Figure 1 I .  (continued) 
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Table I l l .  Details of the adapted grids for the engine inlet 

Triangles Points 

Initial surface mesh 5486 2745 
First adapted surface mesh 22936 11465 
Second adapted surface mesh 46 124 23064 

Tetrahedra Points 

Initial field mesh 39328 7566 
First adapted field mesh 8588 1 19771 
Second adapted field mesh 221257 50488 

Table IV. Details of the adapted grids for the wing/body/pylon,’nacelle 
configuration 

Triangles Points 

Initial surface mesh 
First adapted surface mesh 
Second surface mesh 

32102 15960 
43884 21874 
64164 3 1958 

~ ~ ~ ~~~ 

Tetrahedra Points 

Initial mesh 337696 60605 
First adapted mesh 545214 95406 
Second adapted mesh 768267 I35030 

waves on both the upper surface of the wing and on the nacelle is apparent. Details of the mesh 
statistics for the adaptation procedure are given in Table IV. 

Figure 12(b) shows the stations along the wing at which the results obtained have been 
compared with experimental data, while Figure 12(c) shows the stations for the nacelle. 
Comparisons of the pressure coefficient obtained by experiment with those from the initial 
unadapted mesh and the second adapted mesh are presented in Figure 12(d). The plots show 
that the second adapted mesh solution is a great improvement over the initial solution, with a 
marked increase in the resolution of the shock wave on the upper surface. 

Further comparisons with experimental data are possible on the engine nacelle and Figure 
12(e) presents plots of the pressure coefficient. 

The results presented thus far have compared the solutions at various stages of the adaptation 
procedure. An additional comparison can now be given for the second adapted mesh and the 
unadapted mesh consisting of 592,380 tetrahedra. Comparisons of the pressure coefficient at the 
four stations on the wing detailed in Figure 12(b) are shown in Figure 12(f). Again there appears 
to be a closer agreement between the adapted solution and the experimental data, particularly 
in the resolution of the shock wave on the upper surface. 
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Figure 12. Transonic flow over wing/body/pylon/naceIle configuration: (a) 860 surface mesh and pressure contours; (b) 
C ,  stations along the aircraft wing; (c) C, stations around the nacelle; (d) C, comparisons along the aircraft wing for 
the adapted meshes; (e) C, comparisons around the nacelle for the adapted meshes; (0 C, comparisons along the aircraft 

wing-adapted and fine non-adapted grids 
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Sworn on wing sp.a 

D 91.9 

175' 

Figure 12. (continued) 



GRID ADAPTATION USING A DISTRIBUTION OF SOURCES 76 1 

1 . 2 5  

0 . 1 5  

0 . 5  

0 . 2 s  

a 

,wvG+ 0 0 S.&d adaptron . I n i t i a l  mesh 

- ?s@ Exper iment  0 

- @ 
- C 

9 
+ 

o +  

+ 

O +  
+ o  e 

B - 

1 . 2 5  b 1 

1 -  

0.75 

0.5 

0.25  

0 '  

- 0 . 2 5  

- 0 . 5  

- 
- 
- 

. 

. 

t - 0 . 7 5  

- 0 . 5  

- 0 . 1 5  i 
+ - 
? - 

-1 I I 
- 0 . 1  0.1 0 . 3  0 . 5  0 . 1  0 . 9  1 . 1  

Station Ax" 

1 . 2 5  
I " l t l . 1  mesh 0 

1 Second adapt ion + - 

1 I 
. " , i  ; . i  6.3 2 . 5  2 . -  ; . 3  1.; 

Station If 

n " 

, .  - .  .... V . *  5 . '  . -  ;.? ; . Y  :.: 
Station ii.; 

Figure 12. (conrinuud) 



762 N. P. WEATHERILL ET AL. 

1.2 

Second adaption t 1 
Experiment 0 

1 . e  

0.6 a 0  0.6 

- 0 . 4  

- 0 . 6  

-0.8 

-1 

1 --, 
Initial mesh 0 

Second adaption + 
Experiment 0 

-1.2 -1.2 
3 50 100 150 200 250 300 0 50 100 150 200 2 5 0  300 

PPS PPS 

338'Inboard 22'0 u tboard 

1 . 2  ' I 
0 5 c  109 1 5 0  200 zsc  300 

P P S  
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6. CONCLUSIONS 

The paper has outlined a new method of grid adaptation using a Delaunay triangulation grid 
generation algorithm coupled with sources placed on surfaces and in the field to achieve grid 
refinement. An example has been given which enables the results of the new approach to be 
compared with more conventional grid adaptation methods. The results obtained demonstrate 
that the new method obtains comparable results but with fewer levels of refinement. Two 
examples have been presented for the application of the approach to three-dimensional 
geometries. Good results have been obtained in both cases using just two levels of refinement. 
From the results obtained, the procedure for adaptation, integrated with the very efficient 
Delaunay generator, is cost-effective and potentially more flexible than conventional h-refine- 
ment. Future work will extend the range of applications and develop the method further for 
adaptation in transient problems. 
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